Sitemap

A list of all the posts and pages found on the site. For you robots out there, there is an XML version available for digesting as well.

Pages

Posts

Future Blog Post

less than 1 minute read

Published:

This post will show up by default. To disable scheduling of future posts, edit config.yml and set future: false.

Blog Post number 4

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 3

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 2

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 1

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

publications

Amazon Ads Multi-Touch Attribution

Lewis, R., Zettelmeyer, F., Gordon, B. R., Garib, C., Hermle, J., Perry, M., Romero, H. and Schnaidt, G. (2025). "Amazon Ads Multi-Touch Attribution." arXiv preprint arXiv:2508.08209.

teaching

Retail Analytics and Pricing (MKTG-462-0)

MBA course, Kellogg School of Management, 1900

This course will teach you how to use analytics and data to address decisions faced by retailers and manufacturers. Pricing and promotion decisions are emphasized, with additional coverage on topics such as private labels, product assortment, trade funding, shopper marketing, and more. The course is organized around a hierarchy of topics. We spend roughly one week understanding pricing and promoting to an individual customer. This analysis provides the foundation as we move to more aggregate decisions, such as setting regular and promoted prices at the product level, managing category pricing, and understanding the drivers of store traffic. As we progress through this hierarchy of decisions, we illustrate how different types of data can—or can’t—be used to answer managerial questions. A key part of the class is understanding the limitations of different types of data and how better planning can both simplify the analytics and increase your confidence in the findings. This class is very practical and hands-on. Most of the data we analyze is from real-world managerial problems, through collaborations with leading retailers and consulting firms who have brought problem-driven challenges to the classroom. Weekly homework assignments, both individual and group, are paired with in-class cases. There is no final exam.